

India: Energy Demand and Supply and Climate Opportunities

Jayant A. Sathaye
Senior Staff Scientist
Lawrence Berkeley National Laboratory
Berkeley, CA

22 March 2006

Workshop on Asia-Pacific Partnership on Clean Development and Climate Opportunities in China and India, Washington DC

Contents

- Energy situation in India: An Overview
- Electric Power Sector
- Industrial Sector
- Buildings and Appliances
- Energy efficiency: Key Institutions
- Conclusions

Energy situation in India: An Overview

Primary Energy Supply*

Primary Energy Supply* / GDP (Indexed to 1971)

* Excl. traditional biomass in India

Source:

Energy data – IEA

Economic data - World Bank

LAWRENCE BERKELEY NATIONAL LABORATORY

BERKELEY LAB

Coal continues to dominate energy mix, although natural gas share has increased

Source: Energy data – IEA

- Electricity subsidized to both sectors
- 25% of state fiscal deficit in many states
- Subsidy is about \$2
 billion annually

Source: Energy data – IEA

Decomposing India CO₂ Emissions: Economic and population growth more than offset recent decline in CO₂ emissions intensity

Electric Power Sector

Share	es
100% 90% 80% 70% 60% 50% 40% 30% 20% 10%	■ Solar/Wind/Othe ■ Biomass ■ Hydro □ Nuclear □ Natural Gas ■ Oil □ Coal
191 ¹ 191 ¹ 191 ¹ 198 ⁰ 198 ⁰ 198 ⁰ 198 ⁰ 198 ⁰	188, 188, 1801

India	Generation	%
	Capacity (MW)	
Total	123,668	100
Coal,	68,434	55.5
Natural gas	12,430	10.0
Oil	1,201	0.9
Hydro	32,135	26.0
Nuclear	3,310	2.7
Other	6,158	4.9

Source: IEA Energy Data, and Economic Survey, GOI, 2006

India Electricity Sector: Background Summary

- Consumption per capita of 400 kWh in 2004-05, assuming 25% technical T&D loss; US consumption per capita 13,000 kWh
- India sectoral consumption shares in 2004-05:
 - Industrial 35.6% -- Average tariff about 7 cents per kWh
 - Residential 24.8% -- Subsidized average tariff about 6 cents/kWh
 - Commercial 8.1% -- Maximum tariff, about 9 cents per kWh
 - Agricultural 22.9% -- Heavily subsidized average tariff < 1 cent/kWh
- Continued deficit supply in 2004-05:
 - Peak power deficit 11.6%
 - Energy deficit 8 %
- Severe transmission and distribution (T&D) loss
 - About 50% in 2004-05 aggregate technical and commercial loss (AT&C)
 - Assuming 25% is technical loss -- 100 billion kWh or about \$6 billion a year
- Five year plan targets have not been met:
 - Against the 9th Plan (1997-'02) target of 40,245 MW new capacity, addition was about 21,000 MW
 - Private sector target: 17,589 MW vs. a realized addition of 6,735 MW
 - 10th plan (2002-'07) target 41,010 MW, revised down to 36,956 MW, commissioned: 13,.416 MW
 - Deficits likely to continue in the near term

India's Electricity Intensity Declined Beginning in 1993

Source:

Energy data - IEA

Economic data - World Bank

Maharashtra State Electricity Board (MSEB) Capacity Deficit – Annual average (2002-03) (7836 GWh load shedding over 20 hours a day; 1376 MW average evening peak load shedding)

Hour

Source: Phadke and Sathaye (2005)

Electricity Efficiency Programs Can Play a Key Role

- Indian states face several challenges
 - Growing electricity shortage, deteriorating utility finances, and fiscal deficits
- Improving electricity efficiency through DSM programs for example can
 - Reduce electricity shortage, a national potential of about 10,000 MW
 - Improve utility revenue and financial position
 - Reduce state government subsidy and increase sales tax revenue
 - 20 cents sales tax is lost for each kWh not delivered to businesses
 - Potential to eliminate between 15-25% of state fiscal deficit

Industrial Sector Energy efficiency

Continued improvement in India's industrial energy intensity since mid-1980s

Industrial Production: Aluminum, Cement and Steel India is a Relatively Small Producer Except in the Case of Cement

Country	Aluminum		Cement		Raw Steel	
	Thousand tonnes		Million tonnes		Million tonnes	
	2004		2005		2005	
China	6,670	22%	1,000	45%	333	31%
India	862	3%	130	6%	34	3%
US	2,516	8%	99.1	4%	92.4	8%
Other	19,752	66%	993	45%	631	58%
World Total	29,800	100%	2,222	100%	1,090	100%

Source: USGS, 2006

Energy Efficiency in the Indian Cement Industry

- -Wide range in energy intensity in Indian cement industry
- Some of the most efficient plants in the world are in India
- Only 5% are inefficient wet kilns (vs. 18% in the U.S.)
- Energy savings and emission reduction possible through:
 - -Improved energy efficiency
 - -Increased blending of cement
 - -Use of alternative fuels
 - -Waste heat power generation

LAWRENCE BERKELEY NATIONAL LABORATORY

Cement Energy Intensity Trend, India

Energy Efficiency in the Steel Industry – Electric Arc Furnace

Estimated Energy Intensity Cement and Steel Production

Country	Cement	Steel
	(GJ / tonne cement)	(GJ / tonne cast steel)
China	5.7	23 35
India	4.3	28 32
US	5.4	20+ ? (MECS 94: 26)

Source: LBNL Estimate based on analysis of the industries in each country

 Need better benchmarking of industrial energy use which will open opportunities for voluntary energy efficiency programs

Buildings and Appliances Energy Efficiency

Conversion to modern fuels adds to increase in India's household energy use per capita

Summary of Cost-Effective Unit Efficiency Potential for Four Products in India

Product	Base Case	Efficiency Case	Percentage		
	(kWh/year)	(kWh/year)	Improvement		
Refrigerator					
Direct-cool	381	208	45%		
Room air conditioner					
Window	1191	1056	11%		
Motors					
Agricultural – 5 HP	992*	875*	12%		
Industrial – 15 HP	4079*	3264*	20%		
Industrial – 20 HP	5562*	3387*	39%		
Distribution transformer					
63 kVA	1834	797	57%		
100 kVA	2619	1068	59%		

Only Main Classes Shown

* Motor Consumption includes losses only.

Source: McNeill et al. (2005)

Four-product Impact on Energy Efficiency in India in 2020

Product	Consu	ımption	Potential savings		
	TWh	Percent	TWh	Percent	
Refrigerators	45	3.6%	16.4	36.4%	
Air Conditioners	56	4.5%	4.8	8.7%	
Motors	151	12.1%	3.5	2.3%	
Distribution transformers	25	2.0%	6.8	27.2%	
All 4 Products	276	22.2%	31.5	11.4%	
TOTAL India	1246	100.0%	31.5	2.5%	

Source: McNeill et al. (2005)

Commercial Buildings

- Growing share of electricity use
- Several corporate buildings have been built to US Business Council's platinum and gold LEED ratings
- Government has stated goal for reducing its own consumption in major buildings
- Much of the sector still lags behind
- ESCOs could play a major role in the sector
 - —Financing and risk sharing remain key issues

Energy efficiency: Key Institutions

India Energy Efficiency: Legislation, Institutions, Policies and Programs

- Federal institutions created in the 1970s and 1980s
 - Petroleum Conservation and Research Association (PCRA) under the Ministry of Petroleum and Natural Gas in 1978
 - National Productivity Council and the Energy Management Center
- Recent legislative mandates
 - Energy Conservation Act 2001
 - Created the Bureau of Energy Efficiency (BEE) under the federal Ministry of Power to
 - Develop policies and strategies for reducing energy intensity
 - Delegate authority to state energy development agencies
 - Develop standards and labels for refrigerators, air conditioners, motors, agricultural pumps, and distribution transformers
 - Electricity Act 2003
 - Sets up central and state-level independent regulatory commissions similar to those in the US, can mandate and finance DSM programs
- Industry initiatives
 - Indian Green Business Center (GBC), Confederation of Indian Industry (CII)
 - Provides technical assistance and training to businesses

Conclusions

- Almost all approaches for improving energy efficiency are being tested and tried in India, and the liberalized markets offer more scope than in the past, still the pace is slow
 - Replication of successful practices and demonstrations is needed
- Low hanging fruit, always on the other side of fence,
 - Need best practices to find the gate and pathway
- Techno-economic analysis that is applied in a consistent framework is critical for assessing potential and transferring learning across countries
- Energy efficiency which is often perceived as a blue collar occupation needs to become a white-collar one –
 - Large scale financing of bundled projects where the risk may be shared

Thank you

Please check these websites for LBNL India publications and activities and links

http://ies.lbl.gov/iespubs/indiapubs.html http://www.dc.lbl.gov/india/

Publication site will be updated regularly over the next month

Rapid decline in service sector energy intensity due to fast growth in services value added

